H13 ASTM A681 / AMS 6408 / 1.2344 MATERIAL DATA SHEET

H13

ASTM A681 / AMS 6408 / 1.2344

MATERIAL

Hard, harder, H13. This hot working tool steel is the right choice for applications requiring very high wear resistance, especially against abrasive wear, such as die casting molds or shear knives. A heat treatment is not mandatory, as the SLM® process transforms H13 powder into fully functional, crack-free parts already. If additional ductility or hardness is required, a simple heat treatment can be performed. Looking for the ultimate hardness? After nitriding, a surface hardness of up to 72 HRC can be achieved. Text about material

CHEMICAL COMPOSITION

ASTM A681 ¹										
	Fe	Cr	Мо	Si	v	Mn	С	Р	S	
Min.	Del	4.75	1.10	0.80	0.80	0.20	0.32			
Max.	Dal.	5.50	1.75	1.20	1.20	0.60	0.45	0.03	0.03	

POWDER PROPERTIES

Particle Size ¹	10-45 µm
Mass Density ²	≈ 8.0 g/cm³
Particle Shape ^{3,4}	Spherical, typical batch morphology displayed below

H13

ASTM A681 / AMS 6408 / 1.2344

NIKON SLM® PARAMETERS

It only takes 3 tools to make you successful with metal additive manufacturing:

- 1. The NIKON SLM[®] machine fitting your needs,
- 2. The metal powder that defines the later purpose and functionality of a part,
- 3. Precisely engineered NIKON SLM® parameters as the missing link.

Our open parameters are the result of our vast experience in multi-laser technology and a diligent development and qualification procedure. They are key to produce fully functional parts with properties you can expect and rely on – whether you are new to AM or a large-scale production operator. We offer them to you in the following categories: **Precision (PREC)** for high-resolution complex details, **Prime (PRIM)** for balanced properties with improved productivity and **Productivity (PROD)** for the highest build rates. Pushing boundaries is in our work culture, we can also offer a new dimension of productivity on selected materials with **Productivity+ (PROD+)** and **Productivity++ (PROD++)** parameters.

MATERIAL QUALIFICATION

As one of the inventors of the selective laser melting process, we impose the most comprehensive test procedures on ourselves: hundreds of samples, multiple systems, various powder batches, numerous heat-treatments, machined vs. near-net-shape tensile specimens, several surface roughness conditions and angles, fatigue behavior, corrosion investigation, creep testing... Did we miss anything? Get in touch with us!

H13

ASTM A681 / AMS 6408 / 1.2344

Nikon SL

SLM® 280 PRECISION

Parameter Set Machine Compatibility Validated Data Preparation Theoretical System Build Rate⁵ Minimum Relative Density^{6,7} H13_SLM280_PREC_MBP3_V1 (30 μm) SLM® 280 2.0, SLM® 280 Production System (400W) Materialise SLM Build Processor 20.6 cm³/h (Twin) 99.8%

MECHANICAL PROPERTIES⁸

M: Mean | MIN: Minimum (95 % population coverage / 95 % confidence level)⁷

Non-heat-treated (NHT)

Tensile strength R _m [MPa]		Yield st R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Μ	MIN	Μ	MIN	Μ	MIN
1910	1720	1080	920	6	0
1920	1670	990	780	6	1
	Tensile s R _m [№ 	M MIN 1910 1720 1920 1670	Tensile strength Rm [MPa] Yield st Rp0.2 M M 1910 1720 1080 1920 1670 990	Tensile strength Rm [MPa] Yield strength Rp0.2 [MPa] M M MIN 1910 1720 1080 920 1920 1670 990 780	Tensile strength $R_m [MPa]$ Yield strength $R_{p0.2} [MPa]$ Elongatio AMMMINM1910172010809206192016709907806

Heat-treated (HARD)⁹

	Tensile strength R _m [MPa]		Yield st R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Machined	М	MIN	Μ	MIN	Μ	MIN
Horizontal	1885	1785	1530	1400	9	4
Vertical	1890	1805	1540	1445	6	1

HARDNESS¹⁰

M: Mean | MIN: Minimum (95% Population Coverage / 95% Confidence Level)⁷

	Vickers hardness				
	HV5				
	м	MIN			
As built	570	540			
HARD	560	540			

SURFACE ROUGHNESS¹¹

M: Mean | MAX: Maximum (95% Population Coverage / 95% Confidence Level)⁷

	Roughnes Ra [s average µm]	Mean roughness depth Rz [µm]		
	м	MAX	м	MAX	
As built	6	12	40	85	
Glass Blasting	4	9	30	65	

H13

ASTM A681 / AMS 6408 / 1.2344

Nikon SL

SLM® 280 PRIME

Parameter Set Machine Compatibility Validated Data Preparation Theoretical System Build Rate⁵ Minimum Relative Density^{6,7} H13_SLM280_PRIM_MBP3_V1 (50 μm) SLM® 280 2.0, SLM® 280 Production System (400 W) Materialise SLM Build Processor 32.8 cm³/h (Twin) 99.8%

MECHANICAL PROPERTIES⁸

M: Mean | MIN: Minimum (95 % population coverage / 95 % confidence level)⁷

Non-heat-treated (NHT)

Tensile strength R _m [MPa]		Yield s R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Μ	MIN	Μ	MIN	Μ	MIN
1875	1625	1030	825	5	0
1890	1675	1030	790	5	1
	Tensile : R _m [1 <u>1875</u> 1890	M MIN 1875 1625 1890 1675	Tensile strength Rm [MPa] Yield s Rp0.2 M M 1875 1625 1030 1890 1675 1030	Tensile strength Rm [MPa] Yield strength Rp0.2 [MPa] M M MIN 1875 1625 1030 825 1890 1675 1030 790	Tensile strength Rm [MPa] Yield strength Rpol [MPa] Elongatio A M M MIN M 1875 1625 1030 825 5 1890 1675 1030 790 5

Heat-treated (HARD)⁹

	Tensile strength R _m [MPa]		Yield st R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Machined	М	MIN	Μ	MIN	М	MIN
Horizontal	1920	1690	1600	1415	10	6
Vertical	1955	1725	1610	1440	6	2

HARDNESS¹⁰

M: Mean | MIN: Minimum (95% Population Coverage / 95% Confidence Level)⁷

	Vickers hardness				
	HV5				
	м	MIN			
NHT	560	505			
HARD [®]	545	530			

SURFACE ROUGHNESS¹¹

M: Mean | MAX: Maximum (95% Population Coverage / 95% Confidence Level)⁷

	Roughness average Ra [µm]		Mean roughness depth Rz [µm]	
	м	MAX	м	MAX
As built	6	8	35	50

H13

ASTM A681 / AMS 6408 / 1.2344

Nikon SL

SLM® 280 PRODUCTIVITY

Parameter Set Machine Compatibility Validated Data Preparation Theoretical System Build Rate⁵ Minimum Relative Density^{6,7} H13_SLM280_PROD_MBP3_V1 (90 μm) SLM[®] 280 2.0, SLM[®] 280 Production Series (400 W) Materialise SLM Build Processor 65.6 cm³/h (Twin) 99.7%

MECHANICAL PROPERTIES⁸

M: Mean | MIN: Minimum (95 % population coverage / 95 % confidence level)⁷

Non-heat-treated (NHT)

	Tensile strength R _m [MPa]		Yield s R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Machined	М	MIN	М	MIN	Μ	MIN
Horizontal	1695	1355	925	725	3	0
Vertical	1610	1125	1085	785	2	0

Heat-treated (HARD)⁹

	Tensile strength R _m [MPa]		Yield s R _{p0.2}	trength [MPa]	Elongation at break A [%]	
Machined	М	MIN	М	MIN	Μ	MIN
Horizontal	1840	1750	1500	1415	9	5
Vertical	1815	1725	1495	1430	6	0

HARDNESS¹⁰

M: Mean | MIN: Minimum (95% Population Coverage / 95% Confidence Level)⁷

	Vickers	Vickers hardness			
	н	HV5			
	м	MIN			
NHT	550	535			
HARD ⁹	570	550			

SURFACE ROUGHNESS¹¹

M: Mean | MAX: Maximum (95% Population Coverage / 95% Confidence Level)⁷

	Roughness average Ra [µm]		Mean roughness depth Rz [µm]	
	м	MAX	м	MAX
As built	7	11	47	70
Gasss Blasting	6	10	40	60

H13

ASTM A681 / AMS 6408 / 1.2344

DISCLAIMER

The properties and mechanical characteristics apply to powder that is tested and sold by Nikon SLM Solutions, and that has been processed on Nikon SLM Solutions machines using the original Nikon SLM Solutions parameters in compliance with the applicable operating instructions (including installation conditions and maintenance). The part properties are determined based on specified procedures. More details about the procedures used by Nikon SLM Solutions are available upon request.

The specifications correspond to the most recent knowledge and experience available to us at the time of publication and do not form a sufficient basis for component design on their own. Certain properties of products or parts or the suitability of products or parts for specific applications are not guaranteed. The manufacturer of the products or parts is responsible for the qualified verification of the properties and their suitability for specific applications. The manufacturer of the products or parts is responsible for protecting any third-party proprietary rights as well as existing laws and regulations.

 \circledcirc 2024 Nikon SLM Solutions AG. All rights reserved. Subject to change without notice.

MDS_H13_2024-06.1_EN

CONTACT

Headquarters

Nikon SLM Solutions AG Estlandring 4 23560 Lübeck Germany

Phone: +49 451 4060-3000

www.nikon-slm-solutions.com

NOTES

- ¹ With respect to powder material. Compositions stated as mass or weight percent.
- ² Material density varies within the range of possible chemical composition variations.
- ³ According to DIN EN ISO 3252:2023.
- ⁴ Secondary Electron Image of a typical powder batch
- ⁵ Theoretical system build rate = layer thickness x scan speed x hatch distance x number of lasers. The value represents a com-parable indicator but remains a theoretical value after all. It does expressively not reflect true build rates, which are influenced by part geometry, ratio between hatch and contour areas, area of exposure, recoating times, and more.
- ⁶ Optical density determination at test specimens by light microscopy according to internal specification. Relative density may vary depending on part geometry, orientation, volume, and other process factors. Population coverage: 99 %, confidence level: 99 %.
- ⁷ Minimum or maximum values are set by using tolerance interval method, which is a statistical approach based on the input of population coverage (PC) and confidence level (CL). Tolerance intervals ensure that a certain percentage of samples within a batch will be above the minimum value or below the maximum value with a certain probability, e.g. the probability that 95% of all samples will be above the minimum value or below the maximum value (within a defined batch and tested according to mentioned specifications) is 95%.
- ⁸ Tensile testing was performed in accordance to DIN EN ISO 6892-1:2020 B and conducted at room temperature. Samples are either machined before testing or tested in near-net-shape without any surface finishing (geometry according to DIN 50125:2022-08 D6x30). Values include overlap samples, i.e. multiple lasers work simultaneously on one specimen. All data is derived from standardized SLM Solutions qualification jobs. Samples are built out of both virgin powder as well as used powder.
- ⁹ Heat treatment: Hardening for 45 min at 1040 °C, followed by gas quenching, hold for 4 h at 550 °C and air-cooling.
- ¹⁰ Hardness testing according to DIN EN ISO 6507-1:2024. Measurement direction "2" according to VDI 3405 2.1. Values include overlap samples, i.e. multiple lasers work simultaneously on one specimen. All data is derived from standardized SLM Solutions qualification jobs. Samples are built out of both virgin powder as well as used powder.
- ¹¹ Roughness measurement on vertical walls according to DIN EN ISO 21920-3:2022; λc = 2.5 mm. Glass bead blasting is an additional postprocessing step after corundum blasting. Values include overlap samples, i.e. multiple lasers work simultaneously on one specimen. All data is derived from standardized SLM Solutions qualification jobs. Samples are built out of both virgin powder as well as used powder.